Before the featured portal process ceased in 2017, this had been designated as a featured portal.
Page semi-protected

Portal:Mathematics

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

Refresh with new selections below (purge)

Selected article


Mathematik Göttingen.jpg
Mathematics department in Göttingen where Hilbert worked from 1895 until his retirement in 1930
Image credit: Daniel Schwen

David Hilbert (January 23, 1862, Wehlau, Prussia–February 14, 1943, Göttingen, Germany) was a German mathematician, recognized as one of the most influential mathematicians of the 19th and early 20th centuries. He established his reputation as a great mathematician and scientist by inventing or developing a broad range of ideas, such as invariant theory, the axiomization of geometry, and the notion of Hilbert space, one of the foundations of functional analysis. Hilbert and his students supplied significant portions of the mathematic infrastructure required for quantum mechanics and general relativity. He is one of the founders of proof theory, mathematical logic, and the distinction between mathematics and metamathematics, and warmly defended Cantor's set theory and transfinite numbers. A famous example of his world leadership in mathematics is his 1900 presentation of a set of problems that set the course for much of the mathematical research of the 20th century.

View all selected articles Read More...

Selected image

animation of the act of "unrolling" a circle's circumference, illustrating the ratio pi (π)
Credit: John Reid

Pi, represented by the Greek letter π, is a mathematical constant whose value is the ratio of any circle's circumference to its diameter in Euclidean space (i.e., on a flat plane); it is also the ratio of a circle's area to the square of its radius. (These facts are reflected in the familiar formulas from geometry, C = π d and A = π r2.) In this animation, the circle has a diameter of 1 unit, giving it a circumference of π. The rolling shows that the distance a point on the circle moves linearly in one complete revolution is equal to π. Pi is an irrational number and so cannot be expressed as the ratio of two integers; as a result, the decimal expansion of π is nonterminating and nonrepeating. To 50 decimal places, π  3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510, a value of sufficient precision to allow the calculation of the volume of a sphere the size of the orbit of Neptune around the Sun (assuming an exact value for this radius) to within 1 cubic angstrom. According to the Lindemann–Weierstrass theorem, first proved in 1882, π is also a transcendental (or non-algebraic) number, meaning it is not the root of any non-zero polynomial with rational coefficients. (This implies that it cannot be expressed using any closed-form algebraic expression—and also that solving the ancient problem of squaring the circle using a compass and straightedge construction is impossible). Perhaps the simplest non-algebraic closed-form expression for π is 4 arctan 1, based on the inverse tangent function (a transcendental function). There are also many infinite series and some infinite products that converge to π or to a simple function of it, like 2/π; one of these is the infinite series representation of the inverse-tangent expression just mentioned. Such iterative approaches to approximating π first appeared in 15th-century India and were later rediscovered (perhaps not independently) in 17th- and 18th-century Europe (along with several continued fractions representations). Although these methods often suffer from an impractically slow convergence rate, one modern infinite series that converges to 1/π very quickly is given by the Chudnovsky algorithm, first published in 1989; each term of this series gives an astonishing 14 additional decimal places of accuracy. In addition to geometry and trigonometry, π appears in many other areas of mathematics, including number theory, calculus, and probability.

Did you know…

Did you know...

                         

Showing 7 items out of 75

WikiProjects

The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

WikiProjects

Project pages

Essays

Subprojects

Related projects

Things you can do

Subcategories


To display all subcategories click on the "►":
Mathematics(24 C, 17 P)
Fields of mathematics(23 C, 11 P)
Mathematics-related lists(4 C, 273 P)
Mathematicians(27 C, 2 P)
Mathematical concepts(8 C, 20 P)
Mathematics and culture(19 C, 38 P)
Mathematical examples(11 P)
History of mathematics(16 C, 137 P)
Mathematics and art(4 C, 19 P)
Mathematical modeling(9 C, 107 P)
Mathematical notation(6 C, 104 P)
Philosophy of mathematics(16 C, 50 P)
Mathematical projects(6 P)
Mathematical proofs(8 C, 38 P)
Pseudomathematics(7 P)
Mathematical terminology(1 C, 106 P)
Mathematics textbooks(34 P)
Mathematical theorems(18 C, 36 P)
Mathematical tools(4 C, 35 P)
Women in mathematics(2 C, 16 P)
Wikipedia books on mathematics(1 C, 29 P)
Mathematics stubs(17 C, 179 P)

Topics in mathematics

General Foundations Number theory Discrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


Algebra Analysis Geometry and topology Applied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

Portal:Algebra Portal:Arithmetic Portal:Category theory Portal:Computer science Portal:Discrete mathematics
Algebra Arithmetic Category
theory
Computer
science
Discrete
mathematics
Portal:Logic Portal:Mathematical analysis Portal:Mathematics Portal:Physics Portal:Science Portal:Set theory Portal:Statistics Portal:Topology
Logic Mathematical analysis Mathematics Physics Science Set theory Statistics Topology


In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Wikibooks
Books

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Retrieved from "https://en.wikipedia.org/w/index.php?title=Portal:Mathematics&oldid=905942692"
This content was retrieved from Wikipedia : http://en.wikipedia.org/wiki/Portal:Mathematics
This page is based on the copyrighted Wikipedia article "Portal:Mathematics"; it is used under the Creative Commons Attribution-ShareAlike 3.0 Unported License (CC-BY-SA). You may redistribute it, verbatim or modified, providing that you comply with the terms of the CC-BY-SA